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We propose a stable, straightforward algorithm for the numerical solution of integral 
equations for fluid pair distribution functions. The integral equation is not solved by Picard’s 
standard iterative procedure but by Newton’s method of solution of non-linear equations. The 
large matrix appearing in Newton’s method is inverted by a conjugate gradient procedure 
used as a rapidly converging iterative method. 0 1985 Academic Press. Inc. 

I. INTRODUCTION 

Methods for numerically solving fluid integral equations fall in two broad 
categories [ 1 ] : 

(1) Picard’s or fixed point methods which frequenctly require large numbers 
of iterations; and 

(2) Newton’s method [2]. 

The first method is not stable at high density, and one must resort to problem- 
dependent tricks to achieve convergence (see, e.g., [3]); the second method is more 
efficient but is plagued by the need of inverting a large (typically 1000 x 1000) 
matrix. Gillan [4] has recently proposed a combination of the two methods, 
thereby reducing the size of the matrix to be inverted. His procedure is efficient, but 
not straightforward to program. 

Here we adapt Newton’s method in its primitive form using an efficient way of 
inverting the matrix, taking full advantage of its very structure. In particular, we do 
not need to display the elements of the matrix effectively and hence do not require 
much storage. The resulting algorithm is easy to program. 

TLSTATEMENT OF THE PROBLEM AND FORMAL SOLUTION 

Integral equations of the equilibrium theory of fluids have been used since the 
early sixties Cl] to calculate the pair distribution function g(r). These integral 
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equations result from the combination of two relations. The first one is the 
Ornstein-Zernike (OZ) relation between the total and direct correlation function 
h(r) = g(u) + 1 and C(Y). The second one is an approximate closure between those 
functions, examples of which are given by the Percus-Yevick (PY) or hypernetted 
chain (HNC) closure. Some recent generalisations may be found, e.g., in [S]. 

The problem can be stated in mathematical terms in the following manner: 
Given: The inverse temperature p = l/kh T, the number density p, and the pair 

potential V(Y) 
Fir& t and c functions of r, common roots of the two non-linear operators F, 

and F2 which, in the case of the HNC closure, are explicitly given by 

F,(t, c)=exp(-/?V(r)+ t(r))-c(r)- t(r)- I 

F2(t, c) = p(f(k) + C(k)) e(k) - i(k) 

where A denotes the 3-dimensional Fourier transform 

@k)=jexp(2inkr)h(r)d3r=i[0+” rsin(2nkr)h(r)dr. 

Newton’s method for solving this set of non-linear equations is the following: 

construct a sequence of approximations: c,, t, 
recursively defined by : 6t = t,l + r - t,, 6c = c, + , - c, 

where 6t and 6c are solutions of the set of inhomogeneous linear equations: 

exp(-pV+t,)ht-6c-6t= -Fl(c,, t,) 

8% p(Z, + C,) SC p&t 2) 2, = Fz(c,, t,). 

The left-hand side of (2) results from differentiation of F, and Fz with respect to t 
and c. 

At this point, one could attempt to solve system (2) by Picard’s iterative 
procedure: starting with a first estimate of 6t (e.g., 6t = O), compute 6c from the first 
line, and then 6t from the second, and so on. As this procedure does not converge 
well at high densities, one usually mixes input and output estimates to speed up 
convergence. 

But the crucial fact is that the system (2) is linear, a property which allow us to 
use algorithms specially designed for these problems. The procedure used here, the 
conjugate gradient method (CC) [6] . is a 2-term recurrence which solves iteratively 
a linear system in at most N iterations, where N is the dimension of the discrete 
representation of the functions c and t. We first describe the procedure and its 
application to the problem at hand. 
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III. CONJUGATE GRADIENT METHOD [6] 

The aim is to solve the linear system: AX= B, where A is a linear operator, and 
X and B are functions. 

To this end one constructs a sequence of mutually orthogonal remainders R,, 
which eventually tend to zero, in the following way: Starting with X0 = X- 1 initially 
given, construct recursively, R,, X,, 1 by 

R,=AX,-B 

x N+I =XN--I + WN+,(~N~RN+XN-XN-J 

where the real quantites aN, W,+, are defined by 

EN = (RN, RN)/(JRN, JR,) 

W N+l= [~.-~,(RN, R,v)/a,-1 W,(R,-1, &-,)I-’ 

with WI = 1. Here, (X, Y), denotes an inner product, and A” the adjoint of A is such 
that (21, Y) = (X, AY). It should be mentionned that here we use the method in its 
non-symmetric form, as an iterative procedure. If the problem is ill-conditioned the 
method should not give reliable results. In practice, this does not appear to be the 
case, although the number of iterations increases with density. A preconditioning of 
the operator should thus be desirable [6]. 

For the application to the particular case, one just needs to specify the operators 
A and A”, which is the aim of the next paragraph. 

IV. APPLICATION 

In order to solve (2), we eliminate 6c between the two lines [noting 
h, = exp( --/IV+ t,) - 11, and obtain the following equation for 22: 

s2il-pP,,)-p(~~+2~,)~=F,(t,,c,) (3) 

where Fdt,, c,) = P(?~ + 2c*,) E,(t,, c,) + F2(t,, c,). 
For the operator A, we natur2ly select the left-hand side of (3), acting on S? B is 

identified with F3 and X with 6t. 
To compute easily the adjoint of A, we write it as a sum of two operators, 

A=AI+A2 

A, :X-t(l-p&)X 

A2 :X+ -p(t,+2& 

The scalar product is defined by : (X, Y) = J X(r) Y(r) r2 dr for which the Fourier 
transform is self-adjoint. 
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Now, for this scalar product, it is easy to compute the adjoint of A: we perform 
the sequence of Fourier transforms and products that constitutes A i and A, in 
reverse order, 

A=A”,+A”, 

A, : Y-+ (1 -p&J Y 

A,: Y--Z= -p(z,z+2c^,) Y-g2 

In other words, A”2 Y = h% where Z = -p(Z, + 2iJn) Y. 
The whole algorithm may be summarized as follows: 
Starting with a first estimate t,, c,,, we can solve the system (3) using the method 

described in Section II: one generates a sequence of approximations of 6t, until the 
remainder R, is small enough. Then, with the help of the first line of (2), or from 
the closure relation, one easily gets 6c, and one can thus construct 

t, = t,+ 6t, c,=c,+&. 

The process is repeated until F3 vanishes to the desired accuracy. One should 
note that at high density, the condition number of A is quite high, and we can 
reduce it by multiplying each member of (3) by (1 -PC)- ‘. This is tantamount to 
work with (1 - ~6) - 1 A instead of A, which was actually done. 

V. FINAL FORM AND RESULTS 

For computational purposes, we need to discretize every function. We represent 
each function on a regular grid and compute Fourier transforms with the help of a 
fast Fourier transform routine. 

TABLE I 

Grid of 128 Points p* = 1.2, T* = la 

Number of iterations 
N Errorb Needed for the C.G. method 

1 -4.104 26 
2 N MO4 24 
3 -30 23 
4 N 1.10-Z 21 

<2.10-s 

a Starting point: interpolation of solutions obtained 
at p* = 0.9 and p* = 1.05. 

b Here, Error denotes (F3, F,) =Cy:t e(l) I’, 
before tht: iteration number N. 
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TABLE II 

Grid of 1024 Points p* = 1.2, T* = 1” 

Number of Iterations 
N Errorb needed for the C.G. method 

1 N2.104 24 
2 -3.10-3 21 
3 =2.10-7 10 

<l.lo-‘o 

“Starting point: interpolation on r of the solution t 
obtained in I on the grid of 128 points. 

b Here, Error denotes (Fx, F3) =Cy:l’ e(I) Iz, 
before the iteration number N. 

In order to maintain orthogonality, each integral is computed via a trapezoidal 
rule. The specification of a discrete F.T. rule is sufficient to determine the discrete 
form of A and A” through the formulae (4) and (5). 

Now, we illustrate our method with typical examples: Consider first an inverse 
power potential 

u(r) = &(C/ly)12. 

In reduced form, we have X= r/a, T” = k, T/E, and p* = po3, and we solve the 
Percus-Yevick equation for a density p* = 1.2, and temperature T* = 1. 

We proceed by solving the equation first on a grid of 128 points for reduced den- 
sities ranging from p* = 0. to p* = 1.2 at T* = 1, using for each density the two 
previous solutions linearly extrapolated as starting point. At p* = 1.2, we inter- 

TABLE III 

Grid of 1024 Points p* = 0.85, T* = 0.719” 

Number of iterations 
N Errorb needed for the C.G. method 

1 E3.105 20 
2 N 5.103 21 
3 N2 17 
4 -1.10-4 15 

<lo-‘0 

a Starting point: interpolation of solation obtained at 
TX=3 and T*=1.16. 

b Here, Error denotes (F3, FJ =E:,“=;’ q (I) I*, 
before iteration number N. 
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polate the solution obtained with 128 points on a grid of 1024 points and use this 
function as a new initial guess and then iterate until convergence is achieved to a 
prescribed accuracy. We present the typical results in Tables I and II. To allow 
comparison of the efficiencies of our procedure and Gillan’s combination of Picard’s 
and Newton’s methods we have also investigated the case of a Lennard-Jones 
potential U(Y) = 4s [(o/r)” - (o/r)“] for the HNC equation, on a grid of 1024 points 
in Table III 

VI. CONCLUSION 

In our opinion the proposed method has three main advantages: 

(1) It is stable. The reason for this is clear: first, Newton’s method has a 
very high rate of convergence at any density, giving, when the solution is 
approached, an improvement of about three to five orders of magnitude at each 
step, and second, the conjugate gradient method is a safe method as it guarantees 
convergence in a finite number of steps. Those two ingredients are the reasons of 
the success of the method: it is essentially problem independent and no difficult 
parameter adjustment has to be made. 

(2) It is very well suited for computation on array processors. Most of com- 
putation time is spent in Fourier transformations and scalar products. On array 
processors, those two operators are done in a very short time, making the whole 
process very fast. For instance, the aforementioned computation involving the 
initial computation on a 12%point grid and refinement on a 1024-point grid is per- 
formed in about 4 s on a CRAY 1 S computer for ten successive densities 

(3) Its extension to mixtures is straightforward. One has just to introduce 
the indices corresponding to each species and generalize the equation. Computation 
time is increased by a factor of four to five. Results for mixtures will be the object of 
a future publication. 
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